
Delphi Internals: How not to
Write an Operating System (3)
Disk formatting basics
by Dave Jewell

The naive might be forgiven for
supposing that MS-DOS con-

tains a simple ‘Format Disk’ call
which takes a drive number, an
indication of the required capac-
ity of the disk and a few flags to
specify whether you want to do a
quick format and/or create a
bootable system disk, provide a
volume label and so forth. Those
who believe in the Tooth Fairy
might even anticipate that this
magic call would work under
Windows too...

Well, no such luck I’m afraid. It’s
frankly absurd that even though
DOS is now up to 7.0 (the version
which ships with Windows 95) the
ability to format disks is still not
built into the operating system. In
the days before Windows, this
wasn’t unreasonable. The amount
of code required to do the job is
quite sizeable and it wouldn’t have
been logical to have that code
hanging around in memory all the
time doing nothing but eating into
DOS’s precious 640Kb of RAM.
However, once Windows started
taking off, Microsoft should have
built the disk formatting code into
a separate code segment of the
KERNEL library (the logical place
for it) so that a Windows applica-
tion wishing to format a disk would
be able to do so with one simple
call.

Under Windows 3.1, the File
Manager still has to do the job
itself: around 7Kb of code is
devoted purely to the job of format-
ting disks. Even under Windows 95,
Microsoft still haven’t provided a
simple, all-in-one approach to the
job of disk formatting. OK, they’ve
made a nod in the direction of disk
formatting by providing a new
DeviceIOControl call which formats
a specified number of tracks, but
this is only a relatively small part of

the entire formatting process. And,
of course, DeviceIOControl is only
available to 32-bit applications...

Just to add insult to injury, it
turns out that there is a new rou-
tine called SHFormatDrive. This rou-
tine is implemented in the new
32-bit SHELL32.DLL library and it’s
used by the Windows 95 Explorer.
However, it’s completely undocu-
mented and by the time you’ve
reverse engineered it and figured
out what parameters it takes, you
may as well have written your own
code. Thanks Microsoft...

As with the preceding parts of
this series on low-level disk I/O, the
emphasis here is on formatting
disks from a 16-bit application, but
retaining compatibility for 32-bit
apps. Without documentation on
the SHFormatDrive routine, things
are a little bit easier for 32-bit
programs, but only a little bit...

Five Floppy Format Flavours...
As I’m sure you’ll appreciate, a
floppy disk is made up of a number
of concentric tracks, each of which
has a number of sectors on it.
Before a disk can be used, the track
and sector information has to be
laid down on the disk. Once that’s
done, we have to write a valid BPB
into the first sector of the disk. The
BPB specifies various charac-
teristics of a disk – we’ll discuss it
in more detail presently.

The formatting program also
needs to set up one or two FATs
(File Allocation Tables) on the disk.
These are what DOS uses to keep
track of how each file is allocated.
The FAT allows DOS to determine
which sectors are occupied by a
file, and in what order. As a file is
read from disk, DOS steps through
the appropriate entries of the FAT
to determine the next sector it
needs to read.

On top of all this, we also need to
set up an empty directory on the
disk. The directory contains an
entry for each file on the disk and
has other, special, entries which
relate to sub-directories and the
disk’s volume label, if present – we
touched on this a couple of months
ago.

Life would be relatively straight-
forward if floppy disks only ever
came in one flavour. However, we
need to support at least five
different types of disk capacity:
360Kb and 1.2Mb (5.25 inch) along
with 720Kb, 1.44Mb and 2.88Mb
(3.5 inch).

You’ll remember I mentioned
last month that the Editor won’t
tolerate slackers? Well, He Who
Must Be Obeyed said that it would
be nice if the software included a
Quick Format option. This means
that rather than physically format-
ting each track, the software
simply writes a “factory fresh”
BPB, FAT information and empty
directory to the disk. The problem
with this approach is that when the
user selects Quick Format, we need
to be able to auto-detect whatever
format is already on the disk,
involving more complexity. Is it all
beginning to sound a bit more
complicated than you first
thought? Well you’re right – it is!

If you look at Table 1, it lists the
disk characteristics for each of the
five floppy disk sizes mentioned
above. In actual fact, there are a
couple of older, single-sided for-
mats (160Kb and 180Kb) and a
320Kb format which apply to 5.25
inch disks only. I considered
whether to support these, but in
the end I decided not to bother.
Let’s be realistic: the year is 1996
and anyone who is still using one of
those old disk drives really needs
to get a life!

40 The Delphi Magazine Issue 8

Still referring to Table 1, you’ll
see that the five supported formats
all have a few things in common.
The physical size of a sector is
always 512 bytes, disks are always
double-sided, the reserved sector
count is always one, there are
always two FATs and the hidden
sector count is always zero. In
addition, the track count is 80 for
everything except 360Kb disks.
With all this in mind, I produced the
lookup table shown in Listing 1. It
maps a logical drive type (in the
range 0..4) onto a set of disk

parameters which define that
drive’s geometry.

Absolutely Fabulous Disk I/O
Of course, in order to quick format
an existing volume, we need to
know what format it is in the first
place. To do this, the simplest
approach is to simply read the first
sector of the disk and examine the
BPB to be found there. Shortly,
we’ll take a look at the structure of
a BPB, but for now, let’s concen-
trate on how to read that first
sector. The various file I/O routines

provided as part of the Delphi
run-time library are just that: file
oriented. They can’t be used to
read absolute sectors from the
disk. To read an absolute sector
number, we have to use a special
interrupt number, INT $25. This
interrupt allows us to treat a disk
as a contiguous array of sectors.
For example, a 720Kb floppy uses
nine sectors per track so sector
zero corresponds to the very first
sector on the disk. Sector eight cor-
responds to the last sector on track
zero and sector nine is the number
of the first sector on track one. INT
$25 will allow us to randomly read
any sector we want but (for the
purposes of disk formatting) we’re
generally only interested in the
first few sectors on the disk.

In a similar way, another routine,
INT $26, can be used to perform
absolute sector writes to a floppy
disk. The code for two new rou-
tines, AbsRead and AbsWrite, is given
in Listing 2. These two routines rely
on the “old” form of INT $25 and INT
$26. That is to say, they won’t work
with disk partitions greater than
32Mb in size. For such large disks,
you’d need to use a newer variant
of these routines. Again, this isn’t a
problem for our purposes since
we’re developing code which is
specific to floppy disks.

AbsRead and AbsWrite are quite
straightforward to use, but if
you’re at all worried about acciden-
tally zapping your hard disk (!)
while experimenting with these
routines, then I’d advise you to add
code which checks that the drive
number always corresponds to a
floppy disk, ie in the range 1..2, on
entry to these routines. Similar
arguments apply to some of the
other routines that we shall look at
later. Both routines return an error
code if they fail, or zero on success.

BPBs And All That...
Now that we can read absolute disk
sectors, let’s look in more detail at
the structure of a BPB. As men-
tioned already, BPBs are located
on the very first sector of a disk.
They have to be located there since
it’s the BPB which specifies how to
read the rest of the disk. Since
BPBs form an integral part of the

Disk Size 720Kb 1.44Mb 2.88Mb 360Kb 1.2Mb

Heads 2 2 2 2 2

Tracks 80 80 80 40 80

Sectors/Track 9 18 36 9 15

Total Sectors 1440 2880 5760 720 2400

Free Sectors 1426 2847 5726 708 2371

Sectors/Cluster 2 1 2 2 1

Total Clusters 713 2847 2863 354 2371

Sectors/FAT 3 9 9 2 7

FAT Copies 2 2 2 2 2

Root Dir Sectors 7 14 15 7 14

Reserved Sectors 1 1 1 1 1

Hidden Sectors 0 0 0 0 0

Bytes/Sector 512 512 512 512 512

Bytes/Cluster 1024 512 1024 1024 512

Root Dir Entries 112 224 240 112 224

Media Descriptor $F9 $F0 $F0 $FD $F9

➤ Table 1: Floppy disk characteristics

type
 DiskType = record
 pc : Byte; { sectors per cluster }
 rde : Integer; { number of root-dir entries }
 sec : Integer; { total number of sectors }
 med : Byte; { media descriptor }
 spf : Integer; { number of sectors per FAT }
 spt : Integer; { sectors per track }
 end;
const
 { This array maps a logical drive type to a list of }
 { parameters for that drive. Assumptions: }
 { Bytes per sector = 512 Reserved sectors = 1 }
 { Number of FATS = 2 Heads = 2 }
 { Hidden sectors = 0 Tracks = 80 except 40 for 1st }
 DiskTypes: array [0..4] of DiskType = (
 (spc:2; rde:112; sec: 720; med:$FD; spf:2; spt: 9), { 360 K }
 (spc:1; rde:224; sec:2400; med:$F9; spf:7; spt:15), { 1.2 M }
 (spc:2; rde:112; sec:1440; med:$F9; spf:3; spt: 9), { 720 K }
 (spc:1; rde:224; sec:2880; med:$F0; spf:9; spt:18), { 1.4 M }
 (spc:2; rde:240; sec:5760; med:$F0; spf:9; spt:36)); { 360 K }

➤ Listing 1

April 1996 The Delphi Magazine 41

boot sector (the first disk sector)
I haven’t shown a separate data
structure for BPBs. Instead, look
at the BootSector structure in
Listing 3. This isn’t the cleanest
data structure in the world. It con-
tains a lot of ‘ifs’ and ‘buts’ and
frankly it’s a bit of a mess. This is a
reflection of the fact that it slowly
evolved from the very earliest days
of DOS. For example, the real BPB
actually starts with the third field
(bsBytesPerSec) and ends half way
through the bsHiddenSectors field!
The later fields such as the volume
ID (the DOS serial number), volume
label and file system identifier
aren’t present with early disks but
form part of what’s called the
extended boot record.

In order to distinguish an ex-
tended boot record from a plain
vanilla one, you have to look at the
bsBootSignature field. If this con-
tains the value $28 or $29, then
you’re looking at an extended boot
record and the three aforemen-
tioned fields are valid. Otherwise,
you’re not. You’ll also notice that
the bsHugeSectors field (which
specifies the total number of sec-
tors on disk) is only valid if the
bsSectors field is zero. This, of
course, is to support hard disks
with a larger sector count than can
be contained in a 16-bit integer.

Keep in mind that this data struc-
ture is equally applicable to floppy
disks and hard disks. The only real
difference is that on a floppy disk,
it’s always located on the first
physical sector of the floppy. With
a hard disk, the boot record is
located on the first logical sector of
each partition, of which there may
be more than one. The first physi-
cal sector of a hard disk contains
the master boot record, which
defines the partition layout for the
remainder of the disk.

With this in view, take a look at
Listing 4. The routine shown here,
GetMediaType, simply reads the first
sector from a disk and compares
the bsSectors field of the boot
record against the corresponding
entries in the DiskTypes array. If a
match is found, then the media
type is returned as an integer into
this array. If no match is found, the
value DF_Unknown is returned (one

of those ancient disk formats we
mentioned earlier!) and if the boot
sector can’t be read, then we
return -1. This routine will be used
later in the Quick Format logic.

Lock Up Your Volumes!
There’s another important consid-
eration which Microsoft intro-
duced along with Windows 95.

Windows has always been a multi-
tasking system, but it’s only with
the advent of Windows 95 that it
becomes pre-emptive to any real
extent (NT has always been truly
pre-emptive, but that’s another
story...). Prior to Windows 95,
applications only yielded control
to other running programs when
they executed certain critical API

function AbsRead (Drive: Byte; NumSectors, StartSec: Integer;
 Buffer: Pointer): Integer; assembler;
asm
 mov l,Drive { AL = drive number for read }
 dec al { for compatability, A=1,... }
 mov cx,NumSectors { number of sectors to read }
 mov dx,StartSec { first sector to read }
 push ds { save DS prior to call }
 lds bx,Buffer { DS:BX = pointer to buffer }
 push bp { save stack frame }
 int 25h { do the absolute read }
 pop bx { pop and discard flags }
 pop bp { restore stack frame }
 pop ds { restore DS register }
 jc @@1 { branch if error }
 xor ax,ax { no error - return zero }
@1:
end;

function AbsWrite (Drive: Byte; NumSectors, StartSec: Integer;
 Buffer: Pointer): Integer; assembler;
asm
 mov al,Drive { AL = drive number for write }
 dec al { for compatability, A=1,... }
 mov cx,NumSectors { number of sectors to write }
 mov dx,StartSec { first sector to write }
 push ds { save DS prior to call }
 lds bx,Buffer { DS:BX = pointer to buffer }
 push bp { save stack frame }
 int 26h { do the absolute write }
 pop bx { pop and discard flags }
 pop bp { restore stack frame }
 pop ds { restore DS register }
 jc @@1 { branch if error }
 xor ax,ax { no error - return zero }
@1:
end;

➤ Listing 2

type
 PBootSector = ^BootSector;
 BootSector = record
 bsJump: array [0..2] of Byte; { 00 E9 XX XX or EB XX 90 }
 bsOemName: array [0..7] of Char; { 03 OEM name and version }
 bsBytesPerSec: Integer; { 0b bytes per sector }
 bsSecPerClust: Byte; { 0d sectors per cluster }
 bsResSectors: Integer; { 0e number of reserved sectors }
 bsFATs: Byte; { 10 number of file allocation tables }
 bsRootDirEnts: Integer; { 11 number of root-directory entries }
 bsSectors: Integer; { 13 total number of sectors }
 bsMedia: Byte; { 15 media descriptor }
 bsFATsecs: Integer; { 16 number of sectors per FAT }
 bsSecPerTrack: Integer; { 18 sectors per track }
 bsHeads: Integer; { 1a number of heads }
 bsHiddenSecs: LongInt; { 1c number of hidden sectors }
 bsHugeSectors: LongInt; { 20 number of sectors if bsSectors = 0 }
 bsDriveNumber: Byte; { 24 drive number }
 bsReserved1: Byte; { 25 reserved }
 bsBootSignature: Byte; { 26 extended boot signature }
 bsVolumeID: LongInt; { 27 volume ID number }
 bsVolumeLabel: array [0..10] of Char; { 2b volume label }
 bsFileSysType: array [0..7] of Char; { 36 file-system type }
 end;

➤ Listing 3

42 The Delphi Magazine Issue 8

calls such as GetMessage and
PeekMessage. Now however, an
application can be pre-empted at
any time.

What happens if application A is
formatting a floppy disk and then
application B comes along and
tries to access the disk? The result
can only be trouble of one sort or
another! In order to address this
sort of problem, Microsoft intro-
duced the concept of volume lock-
ing. When an application wants to
format a disk, it must obtain a lock
for that volume. If it doesn’t have
the lock, Windows will “bounce”
certain operating system calls

function GetMediaType (Drive: Byte): Integer;
var
 i: Integer;
 buff: array [0..511] of Byte;
 bs: BootSector absolute buff;
begin
 GetMediaType := -1;
 { Read boot sector from disk }
 if AbsRead (Drive, 1, 0, @buff) = 0 then begin
 GetMediaType := DF_Unknown;
 for i := DF_360K to DF_28M do
 if bs.bsSectors = DiskTypes [i].sec then begin
 GetMediaType := i;
 Exit;
 end;
 end;
end;

➤ Listing 4

function LUVolumePrim (Drive, Level, Op: Byte; Perm: Word): Integer;
 assembler;
asm
 mov ax,$440D { specify generic IOCTL call }
 mov bl,Drive { get drive number in BL }
 dec bl { for compatability, A: = 1 }
 mov bh,Level { get lock level in BH }
 mov ch,8 { category 8 for drives }
 mov cl,Op { get lock/unlock physical }
 mov dx,Perm { get permissions word }
 int 21h { make the call }
 jc @@1 { branch if error }
 xor ax,ax { no error - so AX = 0 }
@1:
end;

function LockVolume (Drive: Byte): Integer;
begin
 if IsWindows95 then begin
 LockVolume := -1;
 if LUVolumePrim (Drive, 0, $4B, 0) = 0 then
 if LUVolumePrim (Drive, 0, $4B, 4) = 0 then
 LockVolume := 0
 end else
 LockVolume := 0;
end;

function UnLockVolume (Drive: Byte): Integer;
begin
 if IsWindows95 then begin
 UnLockVolume := -1;
 if LUVolumePrim (Drive, 0, $6B, 0) = 0 then
 if LUVolumePrim (Drive, 0, $6B, 0) = 0 then
 UnLockVolume := 0;
 end else
 UnLockVolume := 0;
end;

➤ Listing 5

including track formatting and
absolute sector writes. At the same
time, an application which doesn’t
have the lock must clearly be
prevented from accessing a locked
volume.

In reality, things are actually
quite a bit more complex than this.
Microsoft have implemented a
multi-level locking system with
four different levels of lock. As you
move up through the locking levels
from 0 to 3, things become progres-
sively more restrictive for those
applications which don’t hold the
lock. Just to make things a little
more complex, it’s actually the

least restrictive lock (level zero)
which has a special, super restric-
tive mode that’s used only when
formatting disks. Confused? You
certainly will be...

Microsoft’s recommendation is
that a disk-formatting application
should first obtain a standard level
0 lock. It can then lock the volume
a second time to obtain the more
restrictive lock. This is done by
specifying a value of 4 for the asso-
ciated permissions byte. While this
lock is held, the disk can be format-
ted and the program must ensure
that it does not release the inner-
most, restrictive, level 0 lock until
the disk has been put into a state
where it can be recognised as a
normal, FAT-based volume. Finally,
the outermost level 0 lock can be
released.

Listing 5 contains two routines,
LockVolume and UnLockVolume, which
encapsulate my interpretation of
Microsoft’s algorithm for locking
and unlocking volumes. They both
use a lower-level routine which is
not exported from the interface
part of the unit. Because the
volume locking functionality re-
quires Windows 95, these routines
make a special check that they’re
running under Windows 95, or a
later version thereof. The code to
do this is included as part of the
unit, FORMAT.PAS, which is
included on this month’s disk.

Coming Soon...
This time round there is no sample
program to play with: the FORMAT
unit is simply laying the ground-
work for the disk formatting code
proper which I’ll present next
month, so you’ll have to be patient
for a little longer! The DISKINFO
unit remains the same.

When not sticking pins in the wax
effigies of Microsoft system pro-
grammers, Dave Jewell is writing
a new book on 32-bit Delphi and
the Windows API, due to be
published around the middle of
the year, by Wrox Press. You can
contact Dave on CIX as
djewell@cix.compulink.co.uk, on
CompuServe as 102354,1572 or as
DSJewell on America OnLine.

April 1996 The Delphi Magazine 43

	Five Floppy Format Flavours
	Absolutely Fabulous Disk I/O
	BPBs and all that...
	Lock up your volumes!
	Coming Soon....

